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Abstract
On the basis of the nanoscale fluctuations of the excess number density of holes
(free volumes), a theoretical model is developed to describe the glass transition
temperature (Tg) of polymeric films with the thickness <100 nm. A Langevin
equation is used in the derivation that helps us to understand the dependence
of Tg not only on film thickness but also on molecular weight. Substrates
have a strong influence on Tg and the diffusion coefficient of nanofilms, and
the surface concentration of adsorbed chain ends depends on the strength of
polymer–substrate interactions.

The glass transition temperature (Tg) is perhaps the most important physical parameter of
amorphous polymers because a marked change in physical properties is associated with this
transition. The influence of system size on the materials properties has gained importance
with the advent of nanotechnology. Polymeric thin films are widely used in many applications
ranging from microelectronics to nanoscale devices in which the size is already approaching
100 nm and can be expected to decrease further in the future.

The change in the glass transition of freely standing nanofilms and its dependence on
the polymer–substrate interactions is an interesting current unexplained problem in polymer
physics. It has been observed experimentally that Tg may increase or decrease in thin films from
the bulk value depending on the nature of the substrate [1–6]. Molecular simulations of the
glass transition in polymer films under confinement have been reported [7,8], and an analytical
expression for the shift as a function of the film thickness has been discussed for spherical
molecules [9]. The unexpected strong influence of molecular weight measured recently [3]
adds a new level of interest to the problem. Besides, there are contradictory reports about
the increase in segment mobility and the change in the diffusion coefficient as film thickness
decreases. A theoretical understanding of the nanosize phenomena coupled with molecular
weight dependence and substrate interactions is needed to help elucidate these open questions.

The glassy state represents a situation of frozen-in disorder and is a result of the significant
change in the mobility of molecular segments, which can be described by the hole (free volume)
motion [10]. Amorphous polymer consists of holes and polymer chains. The conformational
activation energy controlling the hindered rotational relaxation for bonds of main chain in the
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macromolecule is between one and two orders of magnitude lower than the hole activation
energy, which results in much faster relaxation for the flex bonds. Therefore, the dominant
contribution to the structural relaxation is from the hole as an amorphous melt is cooled
from liquid to solid, which involves the slow relaxation of the frozen-in structure. When the
film thickness is comparable to the radius of gyration of polymer chains, the fluctuations of
excessive hole density become important in the analysis of the glass transition. In this letter, we
shall use a Langevin equation to derive the thickness and molecular weight dependence of Tg .
The influence of substrates will be analysed by using a self-consistent field of polymer layers
formed by adsorbing polymer ends to a surface. The effects of polymer–substrate interactions
on Tg and the diffusion coefficient as a function of film thickness will then be calculated.

Two different views can be found in the literature in the molecular interpretation of Tg .
One view is directed at the nonequilibrium character of structural relaxation and physical
aging [10]. The other considers the condition of relaxation processes occurring so slowly that
Tg can be treated as a time-independent phenomenon. According to Gibbs and DiMarzio’s
time-independent theory [11], glasses are formed as a result of a system losing its configuration
entropy, which is the difference in entropy between the supercooled liquid (Sliquid ) and glass
(Sglass). The configuration entropy of nanofilms depends not only on temperature (T ) but
also on the film thickness (h). By setting the entropy Sglass(h, T ) = Sglass(h → ∞, T ) = 0
at the glass transition, the change in the glass transition temperature from the bulk value,
Tg∞ ≡ Tg(h → ∞), can be determined by the change in the entropy in the liquid states:

ln [Tg(h)/Tg∞] = −[S(h) − S(h → ∞)]�Cp, (1)

where S ≡ Sliquid is a function of h, but the difference in heat capacity �Cp between the
supercooled liquid and glass is approximated to be independent of temperature and film
thickness. The entropy is related to the excess number density of holes, δn = n − 〈n〉,
where 〈n〉 is the homogeneous average, by [12]

S(h) = S0 − β〈[δn(h)]2〉/2, (2)

where S0 is a constant and β depends on molecular weight.
In the study of thickness dependence, consider the change of excess number density, which

is governed by the Langevin-like stochastic equation

d(δn)

dh
= − δn

2hc

+ µ(h), (3)

where µ is the noise term that is the source of fluctuations for δn, and the critical film thickness
hc is the correlation length of the fluctuations. In the de Gennes theory [4] based on sliding
motion of a chain in a thin film, the molecular weight dependence is involved through hc = Rg

where Rg is the radius of gyration of polymer chains. Thus, hc(N) = a
√

N = hc0
√

NN0

where N is the number of monomer segments per polymer chain, a is the average length
of monomer, and the subscript ‘0’ refers to the condition at a reference molecular weight.
Integrating equation (3), squaring it and taking the mean, we get

〈[δn(h)]2〉 = exp(−h/hc)

∫ h

0

∫ h

0
exp

(
h1 + h2

2hc

)
〈µ(h1)µ(h2)〉 dh1 dh2

= σ 2[1 − exp(−h/hc)], (4)

where the standard deviation σ =
√

〈[δn(h → ∞)]2〉. The noise in the above equation has
been assumed to be the uncorrelated white noise with 〈µ〉 = 0 and

〈µ(0)µ(h)〉 = (σ 2/h2
c)δ(h). (5)
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Figure 1. The determination of the exponent θ , which characterizes the nature of cooperative
phenomenon, from the molecular-weight-dependent data for freely standing films in table 1 of [3].

When the noise has long-range correlation, it will be more convenient for us to analyse the
problem by looking at 〈[δn(h)]2〉 − 〈[δn(h → ∞)]2〉 = −σ 2ψ(h) where ψ is the correlation
of fluctuations of δn(h) and goes to zero when the film thickness is significantly larger than a
critical value hc. Each Langevin equation has a corresponding Fokker–Planck equation. From
this, we can have an integral equation that establishes the relation between the autocorrelation
function ψ and the noise correlation function [10]:

dψ(h)

dh
= − 1

σ 2

∫ h

0
〈µ(0)µ(h − s)〉ψ(s) ds. (6)

Let us consider a general expression of the noise correlation function that includes the
long-range correlation and is expressed in terms of the Laplace transform [13]

〈µ(0)µ(q)〉 =
∫ ∞

0
〈µ(0)µ(h)〉 exp(−qh)dh = −σ 2

h2
c

q
∑∞

l=1 (−1)l �(2θl+1)

l!q2θl

1 +
∑∞

l=1 (−1)l �(2θl+1)

l!q2θl

, (7)

where � is the gamma function and θ � 1. The independent parameter θ describes the range of
spatial correlation of the quenched disorder. When θ = 1/2, we get 〈µ(0)µ(q)〉/(σ 2/h2

c) = 1
whose Laplace inversion is the delta function mentioned in equation (5)—uncorrelated local
noise. To see the physical meaning of θ more clearly, let us look at the Laplace inversion
of the leading term in equation (7). We obtain the long-range noise correlation function
〈µ(0)µ(h)〉 ∼ (h/hc)

2θ−2 for 1/2 < θ < 1. The presence of this long-range correlation
suggests a cooperative phenomenon. Putting equations (1), (2), (6) and (7) together, we get

ln

[
Tg(h, N)

Tg∞

]
= − kN

2N0�Cp

exp

[
−

(
h

hc0

√
N0

N

)2θ]
, (8)

where k is the Boltzmann constant and hc0 = Rg0 is a constant. When |Tg − Tg∞|/Tg∞ � 1
and h/hc � 1, equation (8) gives the slope α = ∂Tg/∂h ∼ N1−θ . The exponent θ = 0.7
is determined in figure 1 by fitting this simple scaling relation to recently published data
for polystyrene [3]. The value of this exponent (>1/2) confirms that the glass transition
in nanofilms is indeed a cooperative phenomenon as in bulk polymers. The properties of
polystyrene are �Cp = 6.45 cal mol−1 K−1, and Rg0 = 15 nm for Mw = 228 400 measured
by small-angle neutron scattering at a temperature of 393 K above Tg∞ = 373 K [14]. Figure 2
shows the calculated depression of the glass transition temperatures from the bulk value of thin
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Figure 2. The depression of the glass transition temperature of polystyrene films calculated from
equation (8) as a function of film thickness and molecular weight.

films due to the combined effects of the film thickness and molecular weight. Curve 1 (i.e.
N/N0 = 1) describes the thickness-dependent Tg data at lower molecular weight [1]. Curves
3–9 provide a theoretical interpretation of the effect of higher molecular weight on Tg observed
recently [3]. In the rest of this letter, we shall discuss the influence of substrates by using the
same set of input parameters and choosing N/N0 = 1 to illustrate the numerical predictions
of our theory.

Based on the idea of a self-consistent field, our next step is to analyse the interacting
polymer chains that are attached at one end to an absorbing surface. We consider the typical
case where all monomers are chemically identical and the interactions are repulsive and local.
It may be worthwhile to mention that the chains in a melt are Gaussian and ideal. When we
inscribe our chain on a Flory–Huggins lattice, the pertinent partial differential equation for
ideal chains under external potentials is [15]

a2

6
∇2G = ∂G

∂N
+

U(
r)
T

G. (9)

When a certain concentration profile c(
r) is assumed, one can describe each attached chain
as an ideal chain subjected to a self-consistent external potential:

U(
r) = mT vc(
r)/A, (10)

where m is the number of macromolecules, v = a3/N is the excluded volume parameter of
polymer melts and A is the surface area. The solution of equation (9) is an expansion in the
orthonormal eigenfunctions ui :

G(
r ′, 
r; N) = a3
∑

i

ui ∗ (
r ′)ui(
r) exp(−Nλi). (11)

The eigenfunction expansion contains an exponential factor that tends to give the maximum
weight to the ground-state eigenfunction u1(
r) for which the eigenvalue λi = λ1 is the
minimum. In our situation, the ground state (i = 1) dominates. If we retain only u1 in
equation (11) we arrive at c(
r) = Nu2

1 that is needed in equations (9) and (10). If we put the
surface at z = 0, the ground-state eignfunction is ruled by

a2

6

d2u1

dz2
= (m/A)vNu3

1 − λ1u1. (12)
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Figure 3. The effect of polymer–substrate interactions on the relative glass transition as a function
of the film thickness. The energy of hole formation ε = 3.58 kcal mol−1 for polystyrene [10].

This equation can be interpreted as the equation of motion of a particle with mass
a2/6. The right-hand side is the force with the corresponding potential energy V (u1) =
1
2λ1u

2
1 − 1

4 (m/a)vNu4
1. This potential has a minimum at u1(min) = 0 and a maximum at

u1(max) = √
2Aλ1/mvN , which satisfy the boundary conditions: u1(0) = 0 and u1(h) =

u1(max). Thus, the ground-state eignfunction can be approximated as u1(z)
∼= √

2Aλ1/mνN

for nearly the entire range across the film thickness that is consistent with the numerical
solution of the nonlinear differential equation (12). Using the normalization condition,∫ h

0 c(z) dz = N , we obtain the ground-state eigenvalue, λ1 = mNv/2Ah, which gives the
free energy F = −mT S ∼= mkT Nλ1. The statistical weight, exp(−Nλ1), in equation (11)
gives the entropy reduction. The pressure created in the thin films that is formed by adsorbing
polymer ends to the surface of a substrate is determined by

p(h) = −(1/A)(∂F/∂h)N,m,T = (kT ν/2)(mN/Ah)2. (13)

By analysing the deformational contribution to the entropy change during the glass
formation [10], the pressure-induced change in the glass transition temperature has been
determined as

�Tg = (kT 2
g∞/ε)[1 − exp(−pvL/kTg∞)]. (14)

Here ε is the mean energy of hole formation and the lattice volume vL = a3 = Nv. The
above equation shows that the glass transition temperature increases with pressure. Substituting
equation (13) into (14) and then combining it with equation (8), we finally obtain

Tg(h, N, γ )

Tg∞
= Tg(h, N, 0)

Tg∞
+

kTg∞
ε

{
1 − exp

[
−γ

(
hc(N)

h

)2]}
, (15)

where the first term on the right-hand side is given by equation (8) and the strength of polymer–
substrate interactions is characterized by

γ = (ma2/A)2/2 (16)

that depends on the surface concentration of adsorbed chain ends. Clearly, we have 0 � γ �
1/2 with γ = 0 for freely standing films. Figure 3 reveals that substrates have strong influence
on the increase or decrease of Tg in nanofilms from the bulk value. A similar trend of the Tg

shift related to the polymer–substrate interactions has also been seen from a recent molecular
simulation [7].
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Figure 4. The effect of polymer–substrate interactions on the relative diffusion coefficient as
a function of the film thickness. The hole fraction at the glass transition fg∞ = 0.032 for
polystyrene [18].

There is a simple experiment of an ultra-thin polystyrene film dewetted on a silicon wafer
substrate. Dewetting takes place when a continuous film in the glassy state is heated. The
temperature at which dewetting occurs is found to decrease as the film becomes thinner [16].
This is a different method of analysing the thickness-dependent Tg . When the film reaches the
liquid state, the level of dewetting depends not only on the melt flow of the film but also on
the interfacial energy, which is strongly influenced by adsorbing polymer ends to a surface.

On the basis of mesoscopic fluctuation [17], the shear viscosity η is related to the
fluctuations of excessive hole density by ln [η(h)/η∞] ∼ 〈[δn(h)]2〉/f 〈n〉2 for δn/〈n〉 � 1
and 〈δn〉 = 0, where f is the free volume fraction. Since the diffusion coefficient (D) is
inversely proportional to the viscosity, we obtain

ln [D(h)/D∞] ∼= −[1 − fg(h)/fg∞]/fg∞ + ψ(h)/fg∞〈n〉2, (17)

where fg(h) = fg∞ exp(−pvL/kTg∞) and the pressure p is given by equation (13). By
noting σ 2/〈n〉2 = kTg∞�κ/v = fg∞ where �κ is the excessive compressibility, equation (17)
becomes

ln

[
D(h, N, γ )

D∞

]
= exp

[
−

(
h

hc(N)

)2θ]
− 1

fg∞

{
1 − exp

[
−γ

(
hc(N)

h

)2]}
. (18)

In figure 4, equation (18) predicts reductions in the diffusion coefficient of ultra-thin
polymeric films supported on substrates as size decreases except in the case of weak polymer–
substrate interactions including freely standing films.

Based on fundamental principles, we provide new theoretical predictions and
interpretations of the glass transition temperature and the diffusion coefficient of ultra-thin
films as a function of film thickness, molecular weight and polymer–substrate interactions.
When the correlation length of the fluctuations of excessive hole density is comparable to the
radius of gyration of polymer chains, the physical properties of the film can differ significantly
from the bulk. Indeed, the glass transition temperature can increase or decrease with decreasing
film thickness depending on the strength of polymer–substrate interactions.
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